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Mathematical Representation of Articular Surfaces Using Influence 
Surface Theory 

Jung Soo Han* and Hak Soo Han** 
(Received June 13, 1997) 

Many mathematical techniques have been developed to determine the geometry of articular 

joint  surfaces, because of its so importance to the study of human joint biomechanics. However, 

a three-dimensional geometric model of the articular joint,  which is essential to solid modelling, 

contact area measurement, and load bearing analyses, has not been well developed. This study 

proposes to define the articular geometry of the distal femoral joint  of the human knee. A 

mathematical method based on the influence surface theory of plates is established to generate 

representations of three-dimensional articular surfaces. A mathematical cone and the surface of 

the human distal femur are accurately recreated, allowing their geometric properties to be 

determined. Results suggest that this method can be an effective tool for representing articular 

surfaces. 

Key Words : Articular Joint Surface Geometry, Influence Surface Theory, Distal Femur, Joint 

Biomechanics. 

I. In troduct ion  

Accurate knowledge of the three-dimensional 

articular surface geometry in human joints is 

crucial to the study of joint  biomechanics. It 

affords an understanding of relationships between 

the articular surface and load bearing, allows 

development of diagnostic and reconstructive 

procedures Ibr traumatized or otherwise abnor- 

mal joints, and enhances design of artificial joint  

prostheses. Hence, much interest has focused in 

recent years on the geometry of articular surfaces 

(Blankvoort and Huiskes, 1986: Blankevoort et 

al., 1991; Erkman and Walker, 1974; Garg and 

Walker, 1990; Huiskes et al., 1985; Kurosawa et 

al., 1985; Kurosawa et al., 1985; glewllyn et al., 

1989: PV-WAVE Technical Reference Manual, 

1990; Scherer and Hillberry, 1979; Shiba et al., 

1988). 
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Many measurement techniques, such as close- 

range stereophotogrammetry (Huiskes et al., 

1985), and photographs of sliced specimens 

(Garg and Walker, 1990), have been used to 

describe articular surfaces. These techniques pro- 

vide three-dimensional coordinates relative to a 

reference system of a number of points on an 

articular surface. The coordinates of these points 

are not completely continuous, because the con- 

tinuous articular surface is only approximated by 

finite points. Accurate representation of the origi- 

nal surface is essential to discover if articular 

surfaces retain their geometric properties and 

functions in articular molion. Articular surfaces, 

however, are usually highly irregular, making it 

more difficult to describe them mathematically 

than it is to describe classic geometric surfaces 

such as cylinders or spheres. 

Studies dealing with the representation of 

articular surfaces (most of which are concerned 

with human knee joints) describe simple geomet- 

ric curves (Rehder, 1983), a sphere (Blankvoort 

and Huiskes, 1986), or a polynomial (Blan- 

kevoort et al., 1991) with differen! degrees. These 

representations give only a profile or a crude 
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approximation of an actual articular surface: they 

fail to reflect true three-dimensional geometric 

properties. The polynomial fit of an articular 

surface necessitates determination of its term com- 

position and degree, which are heavily dependent 

on prior tmderstanding of the surface. It is nearly 

impossible to obtain a satisfactory polynomial 

with high fitting accuracy. A more sophisticated 

fitting technique is Coon's bicubic spline (Huis- 

kes et al., 1985; Scherrer and Hillberry, 1979), 

which is to some extent a flexible mapping 

method. Because Coon's method is, in essence, 

piece-by-piece mapping, small regular meshes 

must be divided on the articular surface to 

acquire sufficient coordinate data for approxima- 

tion of the original surface. A need exists for a 

universal fitting technique to represent appropri-  

ately, accurately and effectively, the diversity of 

articular surfaces. A new method for modelling 

articular surfaces based on the influence deflec- 

tion of an infinite plate subjected to lateral loads 

is described in this paper. This method's signifi- 

cant adwmtage is its general applicabili ty and 

flexibility. It is capable of representing any 

articular surface or other complicated surface 

shape by using uniform mathematical manipula- 

tion. 

2,, M a t e r i a l s  and Methods  

2.1 Mathematical  Model 

Deflection equation of the plate. 

Consider a plate that is subjected to lateral 

forces on'ly. The plate deflection obeys the govern- 

ing differential equation 

D'~4w:=q (1) 

where D represents the bending rigidity of the 

plate, w is the lateral deflection, and q is the 

uniform load. Equation (1) is a nonhomogeneous 

biharmonic equation. Its homogeneous form is 

W w = 0  (2) 

Equation (2) corresponds with the presence of 

lateral concentrated loads. We know that the most 

general form of the rigorous solution of the 

nonhomogeneous Eq. (1) can be written as 

1.11 // 
- ,  /,,.,,, 11. Yv' /-,, 

Fig. 1 An infinite plate subjected to a group of 
concentrated loads. Point (x~, yl) is the load 
point, and point (x, h) is the observed point, 
in which the deflection is examined. 

w ( & v )  = u,~ ( & v )  + u,H (~,~) (3) 
where wp is a particular solution of' the non- 

homogeneous Eq. (1), and wH is the solution of 

the homogeneous Eq. (2), with both defined in 

the ~ez~ plane. 

Influence deflection of the infinite plate under 

concentrated loads. 

Consider an infinite plate of arbitrary shape 

(Fig. 1) Assume that concentrated loads PI, P2, 

�9 ", PN are acting at points (xl, Yx), (x> Y2), "", 
(x,,, Yn). Then according to Maxwell 's reciprocity 

law and the singular solution of  plate Eq. (2) 

(Szilard, 1974), the deflection surface generated 

by p,  is : 

wi(~,  7) =kP,E(~-x~) 2+ ( r / -x~) :~ 
�9 L n [ ( ~ e - x , ) 2 +  (r / - -xi)  21 (4) 

where point (~, ~7) is an arbitrary observation 

point on the plate, k is the bending rigidity which 

is assumed to be a proport ional  coefficient (k 

1) in this study, and point (x~, y,) represents the 

load point of the ith individual load Pi. 

The influence deflection for all loads, which 

represents a particular solution of the plate equa- 

tion, is the sum of the function wi (~, ~7) for each 

of the loads: 

u,p(& rj)=2] u,,(& v) (5) 

Suppose that the deflection of the infinite plate 

tends to be flat at distances far away from the 

loads. A linear plane function is then chosen as 

the homeogenous solution of plate Eq. (2): 

w~(~, z;) = A + B ~ e +  C7 (6) 
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where A, B, and C are all coefficients. 

The entire solution of the plate under the con- 

centrated load group is the combination of Eq. 

(5) and (6) according to Eq. (3): 

w(& 8 ) = A + B $ + C z l + ~  w~(~ e, 7) (7) 

Evidently, if Eq. (7) is weth posed, the loads 

acting on the infinite plate must satisfy the equi- 

l ibrium conditions. Because they constitute a 

system of  spatial parallel forces, the following 

three equations can be used: 

Z p , = 0  (8) 

S]. Pixi=O (9) 
~, p~y~=O (10) 

Determination of  surface geometry. 

In a description of articular surfaces, three 

-dimensional  coordinates of sampling points on 

an articular surface can be obtained by using 

different measuring techniques. Assume that ws 

(x~, y~) ( i = 1 ,  2, ..., N) are the sampled height 

coordinates of the articular surface. If the height 

coordinates of the articular surface are considered 

deflections of  the infinite plate defined by Eq. 

(7), then analogously we get N linear equations 

with the unknown A,  B, C, and p~ ( i =  1, 2, .-., 

N): 

A + B x i + c y ~ + ~  w~(xi, y~)=w,(xi ,  y~) (11) 

Combined with the three addit ional Eq. (8), 

(9), and (10), a total of N + 3  equations are 

formed. Their unknown coefficients can be solved 

by utilizing a numerical computation technique. 

Once the coefficients are determined, we then 

generate a representation of the articular surface 

as defined by Eq. (7). 

Calculation of  volume and surface area. 

Because the articular surface is now expressed 

by Eq. (7), the volume of the surface, defined as 

that circumscribed by the surface and the coordi- 

nate plane, can be written as (Wylie and Barrett, 

1982): 

v, f f  w(8, ~)d$& (12) 

or more explicitly as: 

V,=s w,(8, ~)/aSd~ 

(13) 

Here ~ is the integral area on the coordinate 

plane ~e v. Also, the expression for the surface area 

is readily given by (Wylie and Barrett, 1982): 

8w 2 8w 2 

where a is the projected area of the surface on the 

coordinate plane ~ez 2. 

Expanding the two partial derivatives, we have: 

St = ~ f ff l + EZ + F2 d~d~7 (15) 

where 
N 

E = { B + 2 Y ] p I ( I  + E n [  (~e- xi) 2 
i=1  

+ (v -y02] )  (~-x,)} 2 
N 

F = { C + 2 Z p i ( 1  + L n  [ (~e--xi) 2 
i=1  

+ ( ,1-yl)q)  (4-x , )}  2 

Equations (12) and (13) are the general equa- 

tions for calculating the volume and area of 

articular surfaces. However, if the above integral 

areas are irregular, as in most articular surfaces, 

the integrals cannot be calculated directory, 

because the integral areas are inexpressible analyt- 

ically. Even if the integral areas are regular, the 

two analytical integrals (13) and (15), especially 

the latter, are quite complex. Hence, numerical 

forms of the algorithms of the two integrals are 

necessary. 

Let the integral areas in (13) and (15) be 

divided into AI ,  A2 . . . .  Ak small regions. Each 

of the regions is then divided into MN small 

elements (Fig. 2) . The height coordinate of any 

small element is expressed by an arithmetic aver- 

age of its four node-point  height coordinates, so 

that 

K M •  

V~Z : ~ '  ~ WA(~ij, 7]ij)~,j ( 1 6 )  
i=1  d = l  

where Vn denotes the volume as calculated by the 

numerical method and Wa(~eiS, Z]iS) and Ao'~j 

denote the averaged value of the jth height coordi- 

nate defined by Eq. (7) and the jth element area 

for the j th region, respectively. 

To calculated the surface area, we also divide 

the projected integral area into K small regions, 
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Fig. 2 

N 

M 

In the rectangular coordinate system, an inte- 
gral area is divided into M•  small ele- 
ments, and the height coordinate w(~, 7]) of 
each of the elements is represented by an 
average of the four node-point coordinates. 

1 d ~ S 

l I I ~ II 

Fig. 3 Illustration for determining the surface area. 
S denotes the surface, o denotes its projected 
area, zJo" represents any divided element of 
the area, ~S represents the corresponding 
surface element divided into two triangles 
abd and bed. 

with each of the regions further divided into M • 

N small elements Ao'. The Aa corresponds to a 

spatial quadrilateral, which is divided once again 

into two triangular elements (Fig. 3). The surface 

area is thus approximated by the sum of the 

triangular elements; that is, 

K M• K MxN 
Sn = ~a :E Z~SiJ= ~a ~ '  z~S (abd) i j--  Z~S (bcd) ij 

i = 1  j = l  i = 1  j = l  

(17) 

where the triangular areas are defined by 

AS<d,~d~)~=~L~L- d~) (L-d2) (L-d3) (18) 

where L=(dl+d2+d3)/2, and the din(re=l, 2, 
3) are lengths, readily determined by two-point 

distances, calculated from their coordinates, espe- 

Fig. 4 

f? 
Ca) (b) 

Illustration of mathematical cone model (a) 
and regular geometric articular surface (b). 

cially for a large number of sampling points. By 

using the PV-WAVE software package (Preci- 

sion-Visuals,  Technical Reference Manual,  

1990), we designed a calculation program capable 

of reconstructing articular surfaces with graphical 

representation on a computer screen in different 

view angles, and that can evaluac the surface area 

as well as the volume enclosed by the surface and 

some specified coordinate plane. 

3. Task Tests  

3.1 Task A 

A mathematical cone (Fig. 4(a)) can be re- 

presented with the equation: 

Z ( X ,  Y)=l-~/-XZ+ yz (19) 

In the XY plane, Eq. (19) correspords to a 

circular area with radius 1. To obtain the mathe- 

matical representation of the cone surface, we 

chose 25 and then 81 points by regularly dividing 

the circular area into a meshed pattern. The X 

and Y coordinates, of mesh node points were 

readily determined, and their Z coordinates were 

then decided by Eq. (19). With three-dimen- 

sional coordinates obtained from Eq. (19), sur- 

face fitting was performed using our new method, 

based on the influence surface theory of plates to 

obtain a representation of the cone surface. 

3.2 Task B 
Task A created a representation of a regular 

geometric surface (Fig. 4(b))  in which no data 

errors were implicated. Typical articular surfaces, 

however, are highly irregular, and require sam- 

pling of surface coordinates using different mea- 
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surement techniques.  In view of  this, a more 

practical problem, determinat ion of  a distal 

femoral surface, which is believed to be one of  the 

complicated human jo in t  surfaces+ was investigat- 

ed. A commercia l ly  avai lable plastic femur model  

was mounted on the frame of  a cus tom-des igned 

three d imensional  mechanical  digitizer (Col-  

baugh et al., 1991). By moving the stylus of  the 

digitizer on the distal femoral surface, three 

-d imens iona l  coordinates  of  the surface points 

with respect to a fixed global  coordinate  system of 

i 
o q  . . . 1 . , , I . . . .  i �9 

- N  .-4O - N  �9 m ,  

Fig. 5 The digitizing track on the distal femoral 
surface. 

the digitizer, were acquired. The digit izing track, 

or moving path of  the stylus on the surface, was 

arbitrary. A total of  396 sampling points were 

digitized on the femoral surface (Fig. 5). All 

these procedures were completed in a SUN work- 

station, which had been installed with the calcula- 

tion program based on PV Wave package soft- 

ware, 

4. Results  

To verify the effectiveness as well as applicabil-  

ity of  this new technique, two examples, a mathe- 

matical cone and a femur model,  are presented. 

Figure 4(a) gives a theoretical graph, defined by 

Eq. (19), and a fitting graph, represented by Eq. 

(7), for the 81 coordinates  based on predicted 

curve fitting to prove its effectiveness. The theoret- 

ical and calculated volume and surface area of  the 

cone model  are listed in Table  1. Compar i son  of  

the two mathematical  cone graphs in Fig. 6(a) 

and 6(b) indicate good conformity  between the 

representational and theoretical  cones. In addi- 

tion, Table  1 shows that the calculated cone 

Fig. 6 

tJ  

i d  

e~ 

(a) 

i 
FIII~II @r~ 

(b) 

The theoretical (a) and representational surface (b) of a mathematical cone. A total of 81 sampling 
points were used in (b). 

Table 1 Comparison of theoretical and representational volume and surface of mathematical cone model with 
different sampling points. 

Volume 

Surface area 

Theoretical 

model 

25 Sampling points 81 Sampling points 

Calculated Error % Calculated Error % 

1.05 1.01 3.81 1.02 2.86 

4.44 4.30 3.15 4.41 0.64 
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Fig. 7 

(a) (b) 

Representations of the distal femoral surface with the proposed method. (a) 396 sampling points, (b) 
198 sampling points. 

Table 2 Surface area of the distal femoral surface 
with difl'erenl sampling points. 

198 Sampling 396 Sampling 
Unit (Cm z) 

points points 

Surfiice area 31.7 32.4 

Projected area 27.4 27.7 

1.16 1.17 Ratio 

volume and surt;ace areas were close to the theo- 

retical points from 25 to 81, the calculated cone 

volume and surface areas were even closer to the 

theoretical volume and area. 

Figures 7(a) and 7(b) provide a graphic repre- 

sentation of the femoral surface. Similar graphic 

representations were observed under different 

conditions. It should be noted that Figure 5(a) 

was defined by the use of 396 sampling points, 

whereas Figure 5 (b) was created by selecting hall" 

of the 39,5 points alternatively to examine quanli- 

tative differences between both conditions. These 

ahernate 198 points out of 398 points were 

obtained by a numerical interpolation method. 

Table 2 gives femoral surface areas, including the 

projected are a, defined as the projection of the 

femoral surface onto the horizontal plane, along 

with the areas for both 396 and 198 sampling 

points. The projected area was approximated by a 

12 sided polygon, which allowed the femoral 

surface area to be computed by dividing the 

polygon into 400 small rectangles. Each was fur- 

ther divided into 225 smaller rectangular ele- 

ments. For two different sampling points, the 

computed surface areas are quite similar to each 

other quantitatively. The average ratio between 

the computed surt:ace area and the projected area 

was 1.17, indicating that the actual femoral sur- 

face area was approximately 17% greater than its 

projected area. 

5. Discussion 

We have described a new technique for re- 

presenting three dimensional articular surl;aces 

using the influence surface theory of plate. Our 

method has some advantages that can overcome 

various defects of other mathematical fitting tech- 

niques (Blankevoort et al., 1991; Blankevoort and 

Huiskes, 1986: Huiskes et al., 1985: Rehder, 1983; 

Scherrer and Hillverry, 1979). The technique 

developed in this study combines a linear plane 

function, a series of modified natural logarithm 

functions, and the differential equation for deflec- 

tion of a plate under concentrated loads. Because 

the adopted functions satisfy the deflection differ- 

ential equation (a double harmonic equation), 

they are all biharmonic functions, capable of 

generating approximations of the original surface. 

Ruan (1987) used these same biharmonic func- 

tions as trial functions for solving collocation 

problems m surveying (Ruan, 1987). 

The method developed in this study l'ms several 

advantages for representing articular surfaces. 

First, the expression t\)r representing articular 

surfiices as shown in Eq. (7) is independent of the 

selection of the origin of the coordinate system. 

This is superior to the polym)mial filling lech- 

nique in which the expression is different fbr 
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different origins and dependent on the degree of 

the polynomial chosen. Second, no specific data 

sampling pattern is required. Furthermore, 70% 

fewer selected sampling points can still lead to a 

good representation of the articular surface based 

on the quantity of volume and surface area 

(Table 1). comparing the of theoretical quantity 

of volume and surface area, 25 sampling points 

least to a difference of 3.81% in volume and 3.15% 

in surface area, while 81 sampling points leads to 

2.86% and 0.68%, respectively. Fitting accuracy is 

usually increased with an increase in the number 

of sampling points. Finally, an integral mathemat- 

ical expression can be automatically established 

when obtaining the mathematical representation 

of the joint surface, which is more convenient 

than other fitting techniques in determining 

articular surface geometry as well as in assessing 

articular joint study. 

This study details two examples of the applica- 

tion of our method. In task A, comparing Figure 

4(a) with Figure 4(b),  our method fits the entire 

mathematical cone except for its top points, where 

the representational graph is slightly different 

from the original. This occurred because the 

original sharp point on the top has a singularity 

mathematically that is non-differentiable due to 

the concentrated loading as boundary condition. 

However, it has been proven in this study that if 

the number of sampling points around the apex is 

increased, a higher fitting accuracy can be 

obtained, which would be almost impossible with 

other fitting techniques (Blankevoort et al., 1991; 

Blankevoort and Huiskes, 1986; Huiskes, et al., 

1985: Rehder, 1983: Scherrer and Hillberry~ 1979) 

In task B, we reconstructed the geometry of a 

representation of the femoral surfaces. The mathe- 

matical representation of articular surface was 

described with biharmonic functions in our study, 

even though most of previous studies had adopted 

the two spherical function to describe the 

articular surface of the femur (Blankevoor and 

Huiskes, 1986). We believe that mathematical 

representations using biharmonic function may be 

more versatile in describing the geometry prop- 

erties of articular joints than other methods. It 

may also more conveniently provide the geomet- 

ric properties of surface area and volume, along 

two orthogonal directions, because the integral 

mathematical expression of the femoral surface is 

already defined. As a by-product, the ratio 

between the computed femoral surface area and 

its projected area was provided in task B. 

This may make it possible, should enough 

femurs be studied, to describe a better statistical 

relationship between the two areas. The statisti- 

cally proven ratio could be used for estimation of 

the femoral area according to its projected area. 

Two different sets of sampling points were used 

in reconstructing the femoral surface to discover 

whether fewer sampling points would decrease 

the quality of femoral surface reconstruction. 

Statistical analysis shows that the average value 

of the absolute difference between interpolated 

and measured coordinates with 198 sampling 

points case is 0.68+1.27 mm. These two sets 

generated representations that predict surface area 

of the articular joint and lead to a difference of 2% 

in the surface area. However, this interpolation 

may be accepted if we consider the measurement 

accuracy (0.5 mm with resolution of 0.2 mm) of 

our custom designed three-dimensional digitizer. 

This suggests that the method may be an effective 

two-dimensional interpolation, which can lead to 

good representation of articular surface with a 

smaller number of sampling points. This is of 

great importance because it can decrease the 

number of specimen sections required to apply 

the technique of the photographs of sliced speci- 

mens (PSS), where numerous sections are 

required to reconstruct three dimensional surface 

geometry. 

Theoretical and numerical expressions calculat- 

ing surface area are given in Eqs. (15) and (17). 

We found that the numerical expression gave 

more stable and accurate results than did the 

theoretical expression when different divisions 

were chosen in the calculated area. Theoretical 

expression problems probably result from first- 

order partial derivatives, which are highly sensi- 

tive to data noise that inevitably exists in sam- 

piing data. Hence, use of the theoretical forms 

could lead to a relatively large calculation error. 

It is evident, therefore, that numerical expression 
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(17) is preferable to the theoretical expression 

when evaluating articular surface area. 

It should be noted that in this mathematical 

method the representational surface must pass 

through all sampling points, the coordinates and 

measurement accuracies of which are acquired 

and controlled by the three dimensional digitizer 

measurement technique. Therefore, to obtain 

more accurate representation of the articular sur- 

face with this method, a higher accuracy measure- 

ment must be implemented. In determining distal 

femoral surface, we used the three-dimensional 

digitizer, the measurement accuracy of which was 

approximately 0.5 ram. This level of accuracy is 

acceptable, because the example is only meant to 

show the applicabil i ty of this method. In addition 

the size of the femur was relatively large. Should 

small articular surfaces, for example, carpal 

bones, be studied using this method, a more 

discriminating measurement technique is deemed 

necessary for accurate representation. 

One should be aware that since the technique 

includes an N + 3  linear equation set whose coeffi- 

cients must be solved for the surface representa- 

tion, and that the number of equations is directly 

proport ional  to that of the sampling points. Thus, 

a vast coefficient matrix of the equation set will be 

lbrmed if a large number of sampling points is 

acquired and used, This matrix would occupy a 

great amount of computer memory, consume a 

great deal of computing time, and possibly make 

it impossible to perform the computation. There- 

fore, when applying this method and using 

numerous sampling points, a powerful computer 

is required. 

6. Conclusion 

A new technique for representing articular 

surfaces based on the influence surface theory of 

plates is introduced here. Two examples, a mathe- 

matical cone and femur model, were used to 

verify technique effectiveness and applicability. 

Results showed that the proposed method is a 

general and flexible fitting technique well-suited 

for accurate representation of any articular sur- 

face or other complicated surface shape. With few 

limitations, it can be an effective tool in determin- 

ing arlicular surface geometry. 
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